Partie 3 : Rôle central des cellules souches et des télomères au cours du vieillissement




Partie 3 : Rôle central des cellules souches et des télomères au cours du vieillissement

Téloméres et vieillissement -

Épuisement des cellules souches au cours du vieillissement

Avec l’âge, on observe une diminution du nombre de cellules souches de l’organisme ainsi qu’un mauvais renouvellement des cellules somatiques, ce qui est à l’origine de la dégradation des organes au cours du vieillissement [1].

En biologie cellulaire, une cellule souche est une cellule indifférenciée capable, à la fois de générer des cellules spécialisées par différenciation cellulaire et de se maintenir dans l’organisme par prolifération (ou division asymétrique). Les cellules souches sont présentes chez tous les êtres vivants multicellulaires. Elles jouent un rôle central dans le développement des organismes ainsi que dans le maintien de leur intégrité au cours de la vie.

L’épuisement du stock de cellules souches fait partie des risques impliqués dans les processus de vieillissement [1]. Elles ont la capacité de continuer leurs cycles de division cellulaire, au-delà de la limite d’Hayflick. Ce phénomène est en parti dû à la présence de la télomérase, enzyme chargée de synthétiser les télomères, qui est fortement exprimée au sein d’une cellule souche normale [1].

Altérations de la télomérase dans les cellules souches assimilés aux signes du vieillissement

La télomérase est exprimée à un niveau très élevé durant le développement embryonnaire, puis son expression est diminuée quelques semaines après la naissance dans la majorité des tissus adultes, à l’exception de certains types cellulaires : les cellules souches ainsi que les cellules ayant un renouvellement rapide, comme les cellules lymphocytaires ou les kératinocytes de la peau [1]. Le fait que l’activité de la télomérase soit surtout réservée aux cellules souches suggère que son niveau d’expression dans ces cellules pourrait être déterminant pour la préservation de l’organisme.

Au cours des dernières années, le rôle spécifique de la télomérase dans les cellules souches a commencé à être élucidé, en particulier chez les cellules souches hématopoïétiques (CSH) [2][3], les cellules souches épidermiques (CSE) [4] et les cellules souches neuronales (CSN) [5]. Par exemple, il a été observé que chez les hommes et les souris, les CSH perdent de l’ADN télomérique avec l’âge. Ce raccourcissement progressif des télomères semble agir comme une barrière au développement des CSH, limitant alors la régénération des cellules hématopoïétiques et le renouvellement de toutes les lignées des cellules sanguines [2].

Concernant les CSE, le rôle de la longueur des télomères et de l’activité télomérase a été établie à partir de modèles de souris TERC-/-, ne disposant plus du gène codant pour la télomérase. Chez ces souris, le raccourcissement des télomères est associé à une diminution des fonctionnalités des CSE et une inhibition de la mobilisation des CSE (prolifération et migration) en dehors des niches de follicules pileux [4]. Chez ces souris ayant des télomères d’une taille critique, on retrouve des problèmes de régénération de la peau et des cheveux, signes du dysfonctionnement de ces CSE. En dehors des cellules épidermiques, il a été observé chez ces souris TERC -/- que d’autres tissus possédant un taux de renouvellement cellulaire élevé, comme les cellules de la moelle osseuse, de l’intestin et des testicules, présentent des atrophies associées à des télomères très courts [1]. Toutes ces observations confirment le fait que les télomères et la télomérase entrent en jeu dans les mécanismes de préservation des cellules souches et de la santé des tissus dans l’ensemble de l’organisme.

Modification de l’environnement des cellules souches par raccourcissement des télomères

Si le raccourcissement des télomères avec l’âge est un facteur altérant le bon fonctionnement des cellules souches, il semblerait que ce processus ait également un impact sur leur environnement cellulaire, ce qui pourrait accentuer la détérioration des cellules souches au cours du vieillissement [1]. En effet, il a récemment été démontré que de courts télomères pourrait avoir des effets négatifs sur le microenvironnement des cellules souches [6]. Toujours chez des souris ne disposant plus du gène TERC, il a été observé des perturbations dans le fonctionnement des CSH suite à un raccourcissement accéléré des télomères. Cela a pour conséquence d’affecter directement la fabrication des lymphocytes B, responsables de la synthèse d’anticorps, mais aussi d’augmenter la prolifération myéloïde, provoquant un cancer du sang caractérisé par une prolifération incontrôlée des globules blancs. De plus, les différentes modifications de l’environnement cellulaire ont également eu pour conséquence de limiter la capacité d’un tissu à accepter une greffe de cellules souches de la moelle osseuse [6]. Un lien de cause à effet a été démontrée entre ces altérations du microenvironnement des cellules souches et l’âge et ont été corrélées au raccourcissement progressif des télomères des cellules souches.

Mitotic_MDCKs-aging

Ainsi, en plus de déterminer l’entrée en sénescence d’une cellule somatique, le télomère et la télomérase sont impliqués dans les processus de préservation des cellules souches, cellules indispensables pour le maintien de l’organisme. Si l’activité de la télomérase semble se dégrader avec l’âge, ses altérations semblent accélérer les mécanismes du vieillissement en entraînant la dégradation des cellules souches. Ces dernières semblent être de bonnes cibles thérapeutiques, basés sur la régulation de la télomérase et le maintien des télomères, dans le cadres de la lutte contre le vieillissement.

 

SOURCES: 

Katidja Allaoui sur http://www.longlonglife.org/

[1] Chatterjee, S. (2017). Telomeres in health and disease. Journal of oral and maxillofacial pathology: JOMFP, 21(1), 87.

[2] Blasco, M. A. (2007). Telomere length, stem cells and aging. Nature chemical biology, 3(10), 640-649.

[3] Leri, A., Franco, S., Zacheo, A., Barlucchi, L., Chimenti, S., Limana, F., … & Blasco, M. A. (2003). Ablation of telomerase and telomere loss leads to cardiac dilatation and heart failure associated with p53 upregulation. The EMBO journal, 22(1), 131-139.

[4] Cawthon, R. M., Smith, K. R., O’Brien, E., Sivatchenko, A., & Kerber, R. A. (2003). Association between telomere length in blood and mortality in people aged 60 years or older. The Lancet, 361(9355), 393-395.

[5] Canela, A., Vera, E., Klatt, P. & Blasco, M.A. High-thoughput telomere length quantification by FISH and its application to human population studies. Proc. Natl. Acad. Sci. USA 104, 5300–5305 (2007).

[6] Teyssier, J. R., Ragot, S., Donzel, A., & Chauvet-Gelinier, J. C. (2010). Longueur des télomères dans le cortex des patients atteints de troubles dépressifs. L’Encéphale, 36(6), 491-494.